Investigating the acute effects of combined exposure to heat and noise on human brain waves and perceived workload

Document Type : Original Article


1 Environmental Health Research Center, Research Institute for Heath Development, Kurdistan University of medical Science, Sanandaj, Iran

2 Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran

3 Department of Occupational Health, Kashan University of Medical Sciences, Kashan, Iran


Objectives: The prevalence of multiple health hazards in various industries is on the rise, with noise and heat being common harmful factors in industrial environments in Iran. This study aimed to examine the immediate effects of simultaneous exposure to thermal stress and noise on human brain waves and perceived workload.
Methods: Seventy-two students (36 men and 36 women) participated voluntarily in this study. Participants were subjected to varying levels of noise exposure, including four noise levels and heat stress (three levels of Wet Bulb Globe Temperature) for 30 minutes each. EEG recordings were conducted for 10 minutes, with participants allowed a 30-minute rest period between each test condition.
Results: The combined exposure to noise and heat at two high levels (SPL95+WBGT34 and SPL95+WBGT29) resulted in a significant increase in perceived mental workload compared to the baseline state (P<0.05). EEG analysis indicated a decrease in absolute alpha power in the two high-level conditions compared to the baseline (t<0), while absolute beta power showed a significant increase in the two high-level conditions compared to the baseline mode (SPL45+WBGT22).
Conclusion: The study demonstrated that simultaneous exposure to noise and heat, leading to an elevated perceived mental workload, was associated with decreased absolute alpha power and increased absolute beta power in the frontal and occipital regions. These findings suggest that these changes serve as reliable indicators of cognitive and physiological performance.


Mojtaba Zokaei [Pubmed] [Google Scholar]



Main Subjects

  1. E Ivang A, Haruna DU, Iyare E, Anyaehie B, Ochayi OM. Effect of Selenium-yeast on Cognitive Performance on Pregnant Dams Exposed to Noise Stress. Ann ResRev Biol. 2022:69-74. doi:10.9734/arrb/2022/v37i130479
  2. Blackburn G, Broom E, Ashton BJ, Thornton A, Ridley AR. Heat stress inhibits cognitive performance in wild Western Australian magpies, Cracticus tibicen dorsalis. Animal Behav. 2022;188:1-11. doi:10.1016/j.anbehav.2022.03.016
  3. Coachman II JHC, Korner BA, Gaither Z, Khanna R. Effect of Heat Stress Among Aviation Maintenance Workers at ERAU. 2023.
  4. Figi CE, Herstein JJ, Beam EL, Le AB, Hewlett AL, Lawler JV, et al. Literature review of physiological strain of personal protective equipment on personnel in the high-consequence infectious disease isolation environment. Am J Infect Control. 2023. doi:10.1016/j.ajic.2023.05.005 PMid:37182761
  5. Romick J, Balogun R, Nye N. Evaluation and Treatment of Exertional Heat Illness, Rhabdomyolysis, and Hyponatremia. Endurance Sports Medicine: A Clinical Guide: Springer; 2023. p. 63-75. doi:10.1007/978-3-031-26600-3_5
  6. Christogianni A, Bibb R, Filingeri D. Body temperatures, thermal comfort, and neuropsychological responses to air temperatures ranging between 12° C and 39° C in people with Multiple Sclerosis. Physiol Behav. 2023;266:114179. doi:10.1016/j.physbeh.2023.114179 PMid:37019295
  7. Pavlov K, Syrtsev A, Mukhin V, Archimuk A, Mikheeva E, Nikolaeva S, et al. The effect of environmental factors on the cognitive functions of cadets at a military institute. Izvestiya, Atmospheric Oceanic Physics. 2019;55:1465-87. doi:10.1134/S0001433819100086
  8. Wang X, Li D, Menassa CC, Kamat VR. Investigating the effect of indoor thermal environment on occupants' mental workload and task performance using electroencephalogram. Building Environ. 2019;158:120-32. doi:10.1016/j.buildenv.2019.05.012
  9. Shakerian M, Choobineh A, Jahangiri M, Alimohammadlou M, Hasanzadeh J, Nami M. Development and application of a quantitative index for predicting unsafe behavior of shop floor workers integrating cognitive failure reports and best worst method. 2023. doi:10.21203/
  10. Rastegar Z, Ravandi MRG, Zare S, Khanjani N, Esmaeili R. Evaluating the effect of heat stress on cognitive performance of petrochemical workers: A field study. Heliyon. 2022;8(1):e08698.
    doi:10.1016/j.heliyon.2021.e08698 PMid:35028472 PMCid:PMC8741453
  11. Masuda YJ, Garg T, Anggraeni I, Wolff NH, Ebi K, Game ET, et al. Heat exposure from tropical deforestation decreases cognitive performance of rural workers: an experimental study. Environ Res Lett. 2020;15(12):124015. doi:10.1088/1748-9326/abb96c
  12. Monazzam Esmaielpour MR, Zakerian SA, Abbasi M, Ábbasi Balochkhaneh F, Mousavi Kordmiri SH. Investigating the effect of noise exposure on mental disorders and the work ability index among industrial workers. Noise Vibration Worldwide. 2022;53 (1-2):3-11. doi:10.1177/09574565211052690
  13. Wang Y, Huang X, Zhang J, Huang S, Wang J, Feng Y, et al. Bottom-Up and Top-Down Attention Impairment Induced by Long-Term Exposure to Noise in the Absence of Threshold Shifts. Front Neurol. 2022;13:287.doi:10.3389/fneur.2022.836683 PMid:35299612 PMCid:PMC8920971
  14. Fan Y, Liang J, Cao X, Pang L, Zhang J. Effects of noise exposure and mental workload on physiological responses during task execution. Int J Environ Res Public Health. 2022;19(19): 12434. doi:10.3390/ijerph191912434 PMid:36231736 PMCid:PMC9566815
  15. Chao P-C, Juang Y-J, Chen C-J, Dai Y-T, Yeh C-Y, Hu C-Y. Combined effects of noise, vibration, and low temperature on the physiological parameters of labor employees. Kaohsiung J Med Sci. 2013;29(10):560-7. doi:10.1016/j.kjms.2013.03.004 PMid:24099111
  16. Chen C-J, Dai Y-T, Sun Y-M, Lin Y-C, Juang Y-J. Evaluation of auditory fatigue in combined noise, heat and workload exposure. Industrial Health. 2007;45(4):527-34. doi:10.2486/indhealth.45.527 PMid:17878624
  17. Podgornik S, editor Effects of Heat Stress on Cognitive Performance. Proceedings of the MEi: CogSci Conference; 2022.
  18. Giallini I, Inguscio BMS, Nicastri M, Portanova G, Ciofalo A, Pace A, et al. Neuropsychological Functions and Audiological Findings in Elderly Cochlear Implant Users: The Role of Attention in Postoperative Performance. Audiol Res. 2023; 13 (2):236-53. doi:10.3390/audiolres13020022 PMid:37102772 PMCid:PMC10136178        
  19. Vilou I, Varka A, Parisis D, Afrantou T, Ioannidis P. EEG-Neurofeedback as a Potential Therapeutic Approach for Cognitive Deficits in Patients with Dementia, Multiple Sclerosis, Stroke and Traumatic Brain Injury. Life. 2023;13(2):365. doi:10.3390/life13020365 PMid:36836721 PMCid:PMC9966294
  20. Li Z-G, Di G-Q, Jia L. Relationship between electroencephalogram variation and subjective annoyance under noise exposure. Appl Acoustics. 2014;75:37-42. doi:10.1016/j.apacoust.2013.06.011
  21. Finkelman JM, Zeitlin LR, Romoff RA, Friend MA, Brown LS. Conjoint effect of physical stress and noise stress on information processing performance and cardiac response. Human Factors. 1979;21(1):1-6. doi:10.1177/001872087902100101 PMid:468264
  22. Jerison H. Paced performance on a complex counting task under noise and fatigue conditions. Amer Psychologist. 1954;9:399.
  23. Simpson GC, Cox T, Rothschild D. The effects of noise stress on blood glucose level and skilled performance. Ergonomics. 1974; 17(4):481-7. doi:10.1080/00140137408931378 PMid:4442386
  24. Lieberman HR, Bathalon GP, Falco CM, Kramer FM, Morgan III CA, Niro P. Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biol Psychiatry. 2005;57(4):422-9. doi:10.1016/j.biopsych.2004.11.014 PMid:15705359
  25. Tiller D, Wang LM, Musser A, Radik M. AB-10-017: Combined effects of noise and temperature on human comfort and performance (1128-RP). 2010.
  26. Stave AM. The effects of cockpit environment on long-term pilot performance. Hum Factors. 1977;19(5):503-14. doi:10.1177/001872087701900506 PMid:21134
  27. Watkins WH. Effect of certain noises upon detection of visual signals. J Exp Psychol 1964;67(1):72. doi:10.1037/h0045242 PMid:14113920
  28. Ramsey J, Kwon Y, editors. Simplified decision rules for predicting performance loss in the heat. Proceedings Seminar on heat stress indices Luxembourg, CEC; 1988.
  29. Grether WF. Human performance at elevated environmental temperatures. Aerospace Med. 1973;44(7):747-55.
  30. Cohen S, Evans GW, Krantz DS, Stokols D. Physiological, motivational, and cognitive effects of aircraft noise on children: moving from the laboratory to the field. Am psychol. 1980; 35 (3):231. doi:10.1037/0003-066X.35.3.231 PMid:7377650
  31. Wohlwill JF, Nasar JL, DeJoy DM, Foruzani HH. Behavioral effects of a noisy environment: Task involvement versus passive exposure. J Appl Psychol 1976;61(1):67. doi:10.1037/0021-9010.61.1.67 PMid:1249017
  32. Broadbent DE. Effects of noise on performance on embedded figures tasks. J Appl Psychol. 1980;65(2):246-8. doi:10.1037/0021-9010.65.2.246 PMid:7364711
  33. Cohen S, Kessler RC, Gordon LU. Measuring stress: A guide for health and social scientists: Oxford University Press, USA; 1997.
  34. Choi Y, Kim M, Chun C. Measurement of occupants' stress based on electroencephalograms (EEG) in twelve combined environments. Build Environ. 2015;88:65-72. doi:10.1016/j.buildenv.2014.10.003
  35. Abbasi AM, Motamedzade M, Aliabadi M, Golmohammadi R, Tapak L. Combined effects of noise and air temperature on human neurophysiological responses in a simulated indoor environment. Appl Ergonom. 2020;88:103189. doi:10.1016/j.apergo.2020.103189 PMid:32678791
  36. Geng T, Ji F, Tay WP, editors. Modulo EEG Signal Recovery Using Transformer. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2023: IEEE.doi:10.1109/ICASSP49357.2023.10095357
  37. Manohare M, Rajasekar E, Parida M. Analysing the change in brain waves due to heterogeneous road traffic noise exposure using electroencephalography measurements. Noise Health. 2023;25(116):36. doi:10.4103/nah.nah_58_22
    PMid:37006115 PMCid:PMC10301920
  38. Koivisto M, Jalava E, Kuusisto L, Railo H, Grassini S. Top-down processing and nature connectedness predict psychological and physiological effects of nature. Environ Behav. 2022;54(5):917-45. doi:10.1177/00139165221107535
  39. Ismail WW, Hanif M, Mohamed S, Hamzah N, Rizman ZI. Human emotion detection via brain waves study by using electroencephalogram (EEG). Int J Adv Sci Engine Inform Technol. 2016;6(6):1005-11. doi:10.18517/ijaseit.6.6.1072
  40. Bao G, Yang K, Tong L, Shu J, Zhang R, Wang L, et al. Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition. Frontiers in Neurorobotics. 2022;16. doi:10.3389/fnbot.2022.834952 PMid:35280845 PMCid:PMC8907537
  41. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29(2-3):169-95. doi:10.1016/S0165-0173(98)00056-3 PMid:10209231
  42. Mouček R, Vařeka L, Brůha P, Šnejdar P. On applications of brain-computer interface. Acta Polytechnica CTU Proceedings. 2022;39:32-40. doi:10.14311/APP.2022.39.0032
  43. Meng X, Xue S, An K, Cao Y. Physiological Indices and Subjective Thermal Perception of Heat Stress-Exposed Workers in an Industrial Plant. Sustainability. 2022;14(9):5019.
  44. Črepinšek Z, Žnidaršič Z, Pogačar T. Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000-2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers. Agronomy. 2023;13(2):331. doi:10.3390/agronomy13020331
  45. Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology. 52: Elsevier; 1988. p. 139-83.
  46. Ghorbani M, editor Personal and observational methods to assess the workload on the assembly line of an auto industry. Proceeding of the 8th National Conferences on Safety and Health Working Sari, Iran; 2013.
  47. Mohammadi M, Mazloumi A, Zeraati H. Designing questionnaire of assessing mental workload and determine its validity and reliability among ICUs nurses in one of the TUMS's hospitals. J School Public Health Instit Public Health Res. 2013; 11(2):87-96.
  48. Ke J, Du J, Luo X. The effect of noise content and level on cognitive performance measured by electroencephalography (EEG). Automation Construct. 2021;130:103836. doi:10.1016/j.autcon.2021.103836
  49. Jafari MJ, Khosrowabadi R, Khodakarim S, Mohammadian F. The effect of noise exposure on cognitive performance and brain activity patterns. Open access Macedonian J Med Sci. 2019;7(17): 2924. doi:10.3889/oamjms.2019.742 PMid:31844459 PMCid:PMC6901841
  50. Pilcher JJ, Nadler E, Busch C. Effects of hot and cold temperature exposure on performance: a meta-analytic review. Ergonomics. 2002;45(10):682-98. doi:10.1080/00140130210158419 PMid:12437852
  51. Doppelmayr M, Nosko H, Pecherstorfer T, Fink A. An attempt to increase cognitive performance after stroke with neurofeedback. Biofeedback. 2007;35(4):126-30.
  52. Bhoria R, Gupta S. A Study of the effect of sound on EEG. Int J electronics and computer science engineering. 2012;2(1):88-99.
  53. Kim TH, Cho JH, Cho WH, Lee MS, Choi HK. An Investigation into the Measured Values of Driver's Subjective and Objective Sensibility Response Stimulated by Different Car Noises. J Korean Institute Industrial Engineers. 2016;42(1):73-9. doi:10.7232/JKIIE.2016.42.1.073
  54. Cho W, Hwang S-H, Choi H. An investigation of the influences of noise on EEG power bands and visual cognitive responses for human-oriented product design. J Mechan Sci Technol. 2011; 25: 821-6. doi:10.1007/s12206-011-0128-2
  55. Cho W, Lee M, Lee J, Son T, Hwang S, Choi H. An examination of the effects of various noises on physiological sensibility responses by using human EEG. J Mechanical Sci Technol. 2013; 27:3589-93. doi:10.1007/s12206-013-0908-y