Evaluation of in-vitro antibacterial effect of crude venom of Pseudocerastes Persicus snake

Document Type : Original Article

Authors

1 Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Objectives: This study aimed to assess the antibacterial activity of the crude venom of Pseudocerastes persicus against some Gram-negative and Gram-positive bacteria using an antimicrobial susceptibility test.
Methods: The susceptibility of Methicillin-Resistant Staphylococcus aureus (MRSA), Listeria monocytogenes, Bacillus subtilis, Salmonella typhimurium, and E. coli O157:H7 to the crude venom of Pseudocerastes persicus was investigated at a concentration of 100 µg/ml. Standard antibiotic disks were utilized as positive controls. Furthermore, the minimum inhibitory concentration (MIC) against Staphylococcus aureus and MRSA was determined through the dilution method (160-1.25 µg/ml). These MIC values were compared with those of conventional drugs such as streptomycin (25 µg), tetracycline (30 µg), and neomycin (25 µg).
Results: The crude venom exhibited significant antibacterial activity against Staphylococcus aureus, MRSA, Listeria monocytogenes, and E. coli O157:H7. It displayed moderate effects on Salmonella typhimurium but showed no significant impact on Bacillus subtilis. The MIC values against these bacteria ranged from 160 to 80 µg/ml.
Conclusion: The venom from Pseudocerastes persicus demonstrates antibacterial properties and shows potential therapeutic value. Further investigations involving fractionation are necessary to fully explore its therapeutic potential.

Keywords

Main Subjects


  1. Bonomo RA. Multiple antibiotic-resistant bacteria in long-term-care facilities: an emerging problem in the practice of infectious diseases. Clin Infect Dis. 2000; 31(6):1414-22. doi:10.1086/317489 PMid:11096012
  2. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacol. Ther. 2015; 40(4):277-83
  3. Bocian A, Hus KK. Antibacterial properties of snake venom components. Chem Pap. 2020; 74(2):407-19. doi:10.1007/s11696-019-00939-y
  4. Abtahi B, Mosafer Khorjestan S, Ghezellou P, Aliahmadi A, Ranaei Siadat SO, Kazemi SM, et al. Effects of Iranian snakes venom true sea and terrestrial snakes on some bacterial cultures. J Persian Gulf. 2014; 5(18):27-36
  5. Rheubert JL, Meyer MF, Strobel RM, Pasternak MA, Charvat RA. Predicting antibacterial activity from snake venom proteomes. Plos One. 2020; 15(1):1-18. doi:10.1371/journal.pone.0226807 PMid:31978103 PMCid:PMC6980403
  6. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006; 19(3):491-511. doi:10.1128/CMR.00056-05PMid:16847082PMCid:PMC1539102
  7. Permual Samy R, Pachiappan AYE, Chow TKV, Bow H, Weng JT. In vitro antibacterial activity of natural toxins and animal venoms tested against Burkholderia Pseudomallei. BMC Infect Dis. 2006; 6(100): 1-16. doi:10.1186/1471-2334-6-100 PMid:16784542 PMCid:PMC1569838
  8. Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TK, Bow H, Yap EH, et al. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes multilans. Indian J Biochem enzymes. J Appl Microbiol. 2007; 102(3):650-9. doi:10.1111/j.1365-2672.2006.03161.x PMid:17309613
  9. Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sei. 2006; 63:3030-41. doi:10.1007/s00018-006-6315-0 PMid:17103111
  10. Pal SK, Gomes A, Dasgupta SC, Gomes A. Snake venom as therapeutic agents: from toxin to drug development. Indian J Exp Biol. 2002; 40(12):1353-8. doi:10.3390/toxins11100564 PMid:31557973 PMCid:PMC6832721
  11. Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget. 2017; 8(59): 100908-30. doi:10.18632/oncotarget.21740 PMid:29246030 PMCid:PMC5725072
  12. Stiles BG, Sexton FW, Weinstein SA. Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis Australis (Australian king brown or mulga snake) venom. Toxicon. 1991; 29:1129-41 doi:10.1016/0041-0101(91)90210-I PMid:1796476
  13. Conde R, Zamudio FZ, Rodtiguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS. 2000; 471: 165-8. doi:10.1016/S0041-0101(99)00167-1 PMid:10669026
  14. Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus Aztecus. Eur J Biochem. 2002; 267: 5023-31. doi:10.1046/j.1432-1327.2000.01556.x PMid:10931184
  15. Dani MP, Richards EH, Isaac RE, Edwards JP. Antibacterial proteolytic activity in venom from the endoparasitic wasp Pimpla Hypochondriaca (Hymenoptera: Ichneumonidae). J Insect Physiol. 2003; 49:945-54. doi:10.1016/S0022-1910(03)00163-X PMid:14511827
  16. Kozlov SA, Vassilevski AV, Feofanov AY, Surovoy DV, Karpunin EV, Grishin E. Latarcins antimicrobial and cytolytic peptides from venom of the spider Lachesana Tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006; (281)30: 20983-92. doi:10.1074/jbc.M602168200 PMid:16735513
  17. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena Labyrinthica (Araneae: Agelenidae). J Venom Anim Toxins Incl Trop Dis. 2008; (17)4: 641-50. doi:10.1590/S1678-91992008000400007
  18. Latifi M. Iranian snakes. Environmental Protection Agency Publications. 2000; 444-45.
  19. Dehghani R, Fathi B, Shahi MP, Jazayeri M. Ten years of snakebites in Iran. Toxicon. 2014; 90: 291-98. doi:10.1016/j.toxicon.2014.08.063 PMid:25193748
  20. Shahbazi B, Najafabadi ZS, Goudarzi H, Sajadi M, Tahoori F, Bagheri M. Cytotoxic effects of Pseudocerastes persicus venom and its HPLC fractions on lung cancer cells. J Venom Anim Toxins Incl Trop Dis. 2019; 25:1-11. doi:10.1590/1678-9199-jvatitd-2019-0009 PMid:31555336 PMCid:PMC6748451
  21. Nodooshan MM, Sobati H, Malekara E, Goodarzi HR, Ebrahimi F, Normohamadi A, Zargan J. Crude venom of Pseudocerastes persicus snake: From the antibacterial to anticancer effects. Rom J Mil Med. 2021; 124(4):420-30. doi:10.55453/rjmm.2021.124.4.2
  22. Zargan J, Mirzaei Nodushan M, Sobati H, Haji Noormohammadi A, Goodarzi H, Ebrahimi F. In-Vitro Evaluation of Anticancer and Antibacterial Properties of Pseudocerastes Persicus Snake Venom Fractions. Jundishapur J Microbiol. 2022; 21(1):122-37. doi:10.32598/JSMJ.21.1.1846
  23. Jevons MP. "Celbenin"-resistant staphylococci. Br Med J. 1961;1: 124-25 doi:10.1136/bmj.1.5219.124-a PMCid:PMC1952888
  24. Gherardi G. Staphylococcus aureus Infection: Pathogenesis and Antimicrobial Resistance. Int J Mol Sci. 2023;24(9):1-3. doi:10.3390/ijms24098182 PMid:37175886 PMCid:PMC10179453
  25. Wu X, Wang C, He L, Xu H, Jing C, Chen Y, Lin A, Deng J, Cao Q, Deng H, Cai H. Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus isolates in children reported from the ISPED surveillance of bacterial resistance, 2016-2021. Front Cell Infect Microbial. 2023; 13:1-8. doi:10.3389/fcimb.2023.1102779 PMid:36743309 PMCid:PMC9892648
  26. Shamloo E, Hosseini H, Moghadam ZA, Larsen MH, Haslberger A, Alebouyeh M. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran J Vet Res. 2019;20(4):241-54. doi:10.26656/fr.2017.4(1).155
  27. Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact. 2020;19(1):1-12. doi:10.1186/s12934-020-01436-8 PMid:32883293 PMCid:PMC7650271
  28. Asefaw S, Aras S, Kabir MN, Wadood S, Chowdhury S, Fouladkhah AC. Public Health Importance of Preventive Measures for Salmonella Tennessee and Salmonella Typhimurium Strain LT2 Biofilms. Microbiol Res. 2023; 14(2): 714-26 doi:10.3390/microbiolres14020051
  29. Lim JY, Yoon JW, Hovde CJ. A brief overview of Escherichia coli O157: H7 and its plasmid O157. J Microbiol Biotechnol. 2010; 20 (1): 5-14. doi:10.4014/jmb.0908.08007
  30. Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health Implications-a review. J Appl Microbiol. 2017;123: 570-81. doi:10.1111/jam.13468 PMid:28383815
  31. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966; 45(4):493-96. doi:10.1128/am.13.2.279-280.1965 PMid:14325894 PMCid:PMC1058236
  32. Wu M, Hancock R. Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Am Soc Microbiol. 1999; 43 (5), 1274-1276. doi:10.1128/AAC.43.5.1274 PMid:10223951 PMCid:PMC8925
  33. Jami AA, Fathi B, Jamshidi A, Zolfagharian H, Zare MA. Investigation of the antibacterial effect of venom of the Iranian snake Echis carinatus. Iran J Vet Sci Technol. 2010; 2(2):93-100. doi: 10.22067/veterinary.v2i2.8369
  34. Talebi Mehrdar M. Two proteins from snake venom have potent antibacterial effects against Bacillus Anthracis and Streptococcus Pneumoniae. Iran J Toxicol. 2020; 14(3):139-44. doi:10.32598/ijt.14.3.634.1