The relationship of climate and diabetes mellitus prevalence with applying spatial analysis; An Ecological study

Document Type : Original Article

Authors

1 Department of Neurology, Kashan University of Medical Sciences, Kashan, Iran

2 Faculty of Medicine, Department of Community Medicine, Kashan University of Medical Sciences, Kashan, Iran

3 Faculty of Engineering, Department of Science, Islamic Azad University Kashan Branch, Kashan, Iran

4 Faculty of Engineering, Department of Math and Stat, Islamic Azad University Kashan Branch, Kashan, Iran

5 Vice Chancellor for Health Affairs, Kashan University of Medical Sciences, Kashan, Iran

6 Faculty of Health, Department of Biostatistics & Epidemiology, Kashan University of Medical Sciences, Kashan, Iran

Abstract

Objectives: The aims of this study were investigating the association between DM prevalence and climate conditions and finding probable hot-spot areas.
Methods: This ecological study conducted on disease surveillance system of DM data from rural area of two Kashan and Aran-O-Bidgol counties. It is an observational study on the disease surveillance data of health registry system including population characteristics, screened DM cases in 2016. Moran’s I and Getis-Ord’s index were applied to explore the hot-spot areas, and the spatial regression model were conducted for finding the relationship between climate and DM prevalence whilst adjusting some confounders, using GIS software.
Results: The information of 48 cities and villages with 26,800 of ≥30 years people located in three mountainous, plain and dry-desert climates were analyzed. The crude DM prevalence ranged 0-45.4%. The analysis revealed evident hot-spot areas and inverse relationship between altitude and DM prevalence (P<0.05).
Conclusion: Residences of dry-desert climate had high DM prevalence and there was a significant inverse relationship between altitude and DM prevalence.

Highlights

Habibollah Rahimi [Pubmed] [Google Scholar]

Keywords


  1. Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. The lancet. 2016;387 (10027):1513-30. doi: 1016/S0140-6736(16)00618-8
  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14.doi:10.1016/j.diabres.2009.10.007 PMid:19896746
  3. Esteghamati A, Etemad K, Koohpayehzadeh J, Abbasi M, Meysamie A, Noshad S, et al. Trends in the prevalence of diabetes and impaired fasting glucose in association with obesity in Iran: 2005-2011. Diabetes Res Clin Pract. 2014;103(2):319-27. doi:10.1016/j.diabres.2013.12.034 PMid:24447808
  4. Flood D, Seiglie JA, Dunn M, Tschida S, Theilmann M, Marcus ME, et al. The state of diabetes treatment coverage in 55 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 680 102 adults. Lancet Heal Longev. 2021;2(6):e340-51. doi:10.1016/S2666-7568(21)00089-1 PMid:35211689
  5. Waller LA, Gotway CA. Applied spatial statistics for public health data. New Jersey, USA. John Wiley & Sons; 2004. 494 p. doi:10.1002/0471662682
  6. Khan MM, Gruebner O, Kraemer A. The geography of diabetes among the general adults aged 35 years and older in Bangladesh: recent evidence from a cross-sectional survey. PLoS One. 2014;9 (10):e110756. doi:10.1371/journal.pone.0110756 PMid:25356781 PMCid:PMC4214709
  7. Wang L, Zhou M, Astell-Burt T, Bi Y, Feng X, Jiang Y, et al. Geographical variation in diabetes prevalence and detection in China: Multilevel spatial analysis of 98,058 adults. Diabetes Care. 2015;38(1):72-81. doi:10.2337/dc14-1100 PMid:25352654 PMCid:PMC4392931
  8. Cunningham SA, Patel SA, Beckles GL, Geiss LS, Mehta N, Xie H, et al. County-level contextual factors associated with diabetes incidence in the United States. Ann Epidemiol. 2018;28(1):20-25. doi:10.1016/j.annepidem.2017.11.002 PMid:29233722 PMCid:PMC5807217
  9. Shrestha SS, Thompson TJ, Kirtland KA, Gregg EW, Beckles GL, Luman ET, et al. Changes in disparity in county-level diagnosed diabetes prevalence and incidence in the United States, between 2004 and 2012. PLoS One. 2016;11(8). doi:10.1371/journal.pone.0159876 PMid:27487006 PMCid:PMC4972249
  10. Li Y, Fei T, Wang J, Nicholas S, Li J, Xu L, et al. Influencing indicators and spatial variation of diabetes mellitus prevalence in Shandong, China: a framework for using data-driven and spatial methods. Geo Health. 2021;5(3). doi:10.1029/2020GH000320
  11. Barker LE, Kirtland KA, Gregg EW, Geiss LS, Thompson TJ. Geographic distribution of diagnosed diabetes in the U.S.: A diabetes belt. Am J Prev Med. 2011;40(4):434-9. doi:10.1016/j.amepre.2010.12.019 PMid:21406277
  12. Diaz-Valencia PA, Bougnères P, Valleron AJ. Covariation of the incidence of type 1 diabetes with country characteristics available in public databases. PLoS ONE. 2015. doi:10.1371/journal.pone.0118298 PMid:25706995 PMCid:PMC4338253
  13. Bernabé-Ortiz A, Carrillo-Larco RM, Gilman RH, Miele CH, Checkley W, Wells JC, et al. Geographical variation in the progression of type 2 diabetes in Peru: The CRONICAS Cohort Study. Diabetes Res Clin Pract. 2016;121:135-45. doi:10.1016/j.diabres.2016.09.007 PMid:27710820 PMCid:PMC5154928
  14. Woolcott OO, Castillo OA, Gutierrez C, Elashoff RM, Stefanovski D, Bergman RN. Inverse association between diabetes and altitude: A cross-sectional study in the adult population of the United States. Obesity. 2014;22(9):2080-90. doi:10.1002/oby.20800 PMid:24890677 PMCid:PMC4149588
  15. Euser AG, Hammes A, Ahrendsen JT, Neshek B, Weitzenkamp DA, Gutierrez J, et al. Gestational diabetes prevalence at moderate and high altitude. High Alt Med Biol. 2018;19(4):367-72. doi:10.1089/ham.2018.0012 PMid:30281336 PMCid:PMC6338563
  16. Preston E V., Eberle C, Brown FM, James-Todd T. Climate factors and gestational diabetes mellitus risk - a systematic review. Environ Heal A Glob Access Sci Source. 2020;19(1). doi:10.1186/s12940-020-00668-w PMid:33168031 PMCid:PMC7653781
  17. Ord JK, Getis A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr Anal. 1995;27(4): 286-306. doi:10.1111/j.1538-4632.1995.tb00912.x
  18. Getis A, analysis JO-P on spatial data, 2010 undefined. The analysis of spatial association by use of distance statistics. Springer. [cited 2021 Nov 22]; Available from: https://link.springer.com/chapter/10.1007/978-3-642-01976-0_10
  19. Statistics how to. Retrieved November 23, 2020, from: https://www.statisticshowto.com/morans-i/
  20. Woolcott OO, Ader M, Bergman RN. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev. 2015;36(2):149-73. doi:10.1210/er.2014-1063 PMid:25675133 PMCid:PMC4399271
  21. Seclen SN, Rosas ME, Arias AJ, Huayta E, Medina CA. Prevalence of diabetes and impaired fasting glucose in Peru: report from PERUDIAB, a national urban population-based longitudinal study. BMJ Open Diabetes Res Care. 2015;3(1):e000110. doi:10.1136/bmjdrc-2015-000110 PMid:26512325 PMCid:PMC4620143
  22. Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet. 1962;14:353-62.
  23. Biology JN-H, 1989 undefined. The study of natural selection in primitive and civilized human populations. JSTOR. [cited 2022 Feb 14]; Available from: https://www.jstor.org/stable/41478724
  24. Ravelli A, Meulen J van der, Lancet RM-T, 1998 undefined. Glucose tolerance in adults after prenatal exposure to famine. Elsevier. [cited 2022 Feb 19]; Available from: https://www.sciencedirect.com/science/article/pii/S0140673697072449
  25. Fridlyand LE, Philipson LH. Cold climate genes and the prevalence of type 2 diabetes mellitus. Med Hypotheses. 2006; 67 (5): 1034-41. doi:10.1016/j.mehy.2006.04.057 PMid:16797871