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Abstract

Original Article

Introduction

Volatile organic compound (VOC) emission is a major issue 
with harmful effects on human health and environment.[1‑3] 
VOCs such as toluene are the main group of air pollutants in the 
work environment. These compounds also are one of the most 
important resources of photochemical reactions. VOCs can 
easily enter to air from different industrial and environmental 
resources because of their high vapor pressure.[4] VOCs also 
are the main resource of formation of photochemical smog in 
the urban area.[5] Among the vast variety of VOC components, 
toluene is one of the most dangerous ones that are using in a 
lot of chemical industries.[6] So far, a number of methods have 

developed for VOC removal such as thermal oxidation,[7] 
catalyst oxidation,[8] absorption,[9] and nonthermal plasma.[5,10] 
In the recent decade, adsorption is an effective and practical way 
for VOC removal and recovery. More than 10% of the industrial 
abatement units are based on adsorption techniques, and it is 
growing to meet the strict legislation on VOC control. In the 
recent decade, adsorption is an effective and practical way for 
VOC removal and recovery. More than 10% of the industrial 
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abatement units are based on adsorption techniques, and it is 
growing to meet the strict legislation on VOC control.[11]

Today, foundations such as zeolites, activated carbon, or 
diatomite with high surface area provide more time for 
photocatalytic reactions of catalyst and ultraviolet  (UV) 
by the absorption of volatile compounds on the surface 
and their pores and thus increase the removal efficiency.[12] 
Zeolites are a common and popular candidate for removal 
gaseous and vaporous pollutants as the catalyst and effective 
adsorbent because of their high surface area, high adsorption 
capacity, chemical, thermal stability, controllable acidity, 
and pore structure.[4,13,14] Zeolites also are aluminosilicate 
minerals with a cage  (framework) structure with three 
dimensions.[15] HZSM‑5 zeolite with Mordenite Framework 
Inverted (MFI)‑type structure is one of the famous zeolites, 
which is frequently used as a support for many heterogeneous 
catalysts and photocatalysts for removal of the pollutants such 
as VOCs.[16] Modifying the molecular sieves by chemical or 
thermal methods or both can improve features such as specific 
surface area and the functional groups and thus increase its 
efficiency in the refining processes.[17] Zeolite combination with 
another catalyst such as metals and photocatalyst materials 
showed better pollutant oxidation and improving performance 
efficiency for VOC treatment.[18] Photocatalytic oxidation by 
having advantages such as an activity at ambient temperature 
and low pressure, low cost, and low power consumption in 
comparison with other methods has been introduced as one of 
the promising alternatives for treating a wide range of VOCs 
in the recent years.[19‑21]

Titanium dioxide  (TiO2) has become apparent that organic 
compounds can be oxidized to carbon dioxide  (CO2) by 
hydroxyl radicals generated on the TiO2 surfaces.

[22] In the 
photocatalytic process, a catalyst with the proper band gap 
such as zinc oxide or TiO2 and light source (usually UV) is 
used to convert organic compounds into benign and odorless 
constituents – water vapor (H2O) and CO2.

[21,23,24] TiO2 (with 
three crystalline phases: anatase, rutile, and brookite), a 
white powder that has a photocatalytic and superhydrophilic, 
is used in water and wastewater treatment, air pollution, 
and buildings.[12] Features such as low price, availability, 
chemical stability, and lack of toxicity make the TiO2 as the 
most appropriate photocatalyst.[25] TiO2 is the most common 
photocatalyst with high stability, nontoxicity, low cost, 
high photocatalytic activity under UV source, and chemical 
inertness.[6,26,27] The literature review indicates that numerous 
researches carried out studies on the different aspects of 
heterogeneous catalyst and HZSM‑5 zeolite. Radwan et al. 
compared the different preparation methods for HZSM‑5/TiO2 
photocatalyst.[26] Mesopore structured ZSM‑5 zeolitic materials 
with acidic sites for n‑heptane and toluene adsorption and 
diffusion.[16] Selective Adsorption of silica coated ZSM-5 for 
p‑chloronitrobenzene and o‑chloronitrobenzene studied by 
Guo et al.[28] Huang studied the promotional effect of HZSM‑5 
on the catalytic oxidation of toluene over MnOx/HZSM‑5 
catalysts.[18] The main goal of this research is to investigate the 

adsorption properties and capacity of different percentages of 
TiO2 heterogeneous photocatalyst for removal toluene vapors 
from the air stream.

Materials and Methods

Photocatalyst preparation
HZSM‑5 zeolite was synthesized in the laboratory and 
after granulation sieved with 10/20 mesh. The granules 
were placed in the oven at 100°C for dehumidification, 
then calcinated for 3 h at 450°C, and finally, were dried 
for 24 h in the desiccator.[29] Impregnation method was 
used for photocatalyst preparation. Ammonium titanium 
oxalate monohydrate with chemical formulation  (NH2)2 TiO 
(C2O4)2.H2O with molecular weight 294 was used for coating 
TiO2 on zeolite. First, this salt was dehydrated at 108°C for 2 
h. After weighing 3.5% and 8%, 1 g of zeolite was added to 
TiO2 solution and then stirred for 1 h at 70°C. Photocatalyst 
was dried in the oven for 12 h at 120°C. Any additional 
compound on photocatalyst evaporated after calcination at 
500°C for 3 h.[29]

Photocatalyst characterizations
Physical characterization of HZSM‑5 zeolite and HZSM‑5/
TiO2 photocatalyst including structure and morphology was 
identified by scanning electron microscope  (SEM). Crystal 
structure was identified by X‑ray diffraction (XRD) and 
Brunauer Emmett Teller (BET) test for illustrating the isotherm, 
specific surface area, pore size, and total volume distribution. 
To determine the elemental composition of photocatalyst, 
Energy Dispersive X ray (EDX) spectra were used.

Photocatalyst testing
Toluene (purchased from Merck Company) vapors produced 
in a dynamic system in 42 ppm and follow rate of 0.5 L/min, 
then introduced to the reactor containing 1 g of HZSM‑5/
TiO2 (3%, 5%, and 8% TiO2). The co‑axial photocatalyst 
reactor included a stainless steel bar as center of the 
reactor with 25 cm length and 6 mm external diameter and 
cylindrical tube of quartz glass with 25 cm length and 1 cm 
internal diameter. The concentration of toluene in inlet and 
outlet of reactor, regularly monitored using tiger pho check. 
The experimental setup is shown in Figure 1.[30]

When the first concentration of vapors was released from the 
reactor, it was recorded to calculate adsorption capacity and 
breakthrough point. For determining the adsorption capacity 
for all four catalysts, the following equation was applied:

BC C T Q
g

in bk
=

+ +

where

BC = Adsorption capacity (mg/g)

Cin = Inlet toluene concentration (ppm)

Tbk = Breakthrough point
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Q = Flow rate (L/min)

g = Weight of adsorbent (g)

Results

X‑ray diffraction analysis
The XRD spectra of HZSM‑5 showed general formula  H 49.61Al 1.78 
O 216 Si 94.22 and hydrogen tecto‑aluminosilicate hydrate chemical 
formula and proved H exchange in zeolite structure. The XRD 
pattern spectrum 2 θ parameter is similar between zeolite of this 
study and standard zeolite. Figure 2 illustrates the two sharp 
peaks in 2 θ = 7°–9° and 2 θ = 23°–25° which conforms to the 
standard pattern of HZSM‑5 zeolite. This zeolite also showed 
a high amount of Si element.

The EDX spectra [Figure 3] showed the element composition 
of HZSM‑5/TiO2 5% as an example. From the EDX graphs 
investigation, the elements including AL, O, Na, Si, Ca, 
Ti, and Ag were found on the surface of the photocatalyst. 
Among them, Al, Si, O, and Ti had the highest amount and 
the sharpest peaks.

The BET‑specific surface area
The adsorbed and desorbed lines of HZSM‑5/TiO2 photocatalyst 
showed a type II of sorption isotherm according to IUPAC 
classification [Figure 4]. The specific surface area was determined 

by the BET method, showing that HZSM‑5 was 289 m2/g, 
HZSM‑5/TiO2‑3% was 213 m

2/g, 5% was 189 m2/g, and 8% was 
185 m2/g. The textural properties of samples are shown in Table 1.

Scanning electron microscope image
Figure 5 illustrates the SEM of HZSM‑5/TiO2 photocatalyst 
at 3% weight percent in 2 µm and 500 nm.

The adsorption test of the Photocatalyst
The adsorption tests were carried out according to the 
procedure presented in the Photo catalyst test section. The 
different sample adsorption experimental results are shown in 
Table 2. As indicated in the experimental results in Table 2, by 
increasing the percentage of TiO2, the adsorption capacity is 
increased, but the specific surface area was decreased.

Discussion

With consideration of the importance of adsorption capacity 
and adsorption properties of absorbent materials such 
as Zeolites   for VOCs treatment, the aim of this study is 
investigation of HZSM‑5 and HSZM‑5/TiO2 adsorption 
properties for toluene vapors removal from air stream. 
As mentioned in the result section, the XRD pattern of 
self‑prepared zeolite was compatible with standard pattern.[31] 

Figure  1: Schematic diagram of experimental setup:  (1) air purifier 
filter;  (2) two‑way valve;  (3) airflow meter;  (4) bubbler;  (5) four‑way 
valve (6) three‑way valve; (7) plasma reactor; (8) quarts tube; (9) high 
voltage electrode; (10) catalyst[22]

Figure 3: X‑ray energy dispersive spectra of HZSM‑5/titanium dioxide‑5% Figure 4: The adsorbed and desorbed line of HZSM‑5/titanium dioxide‑3%

Figure  2:  (a) X‑ray diffraction spectra on HZSM‑5 zeolite;  (b) X‑ray 
diffraction standard pattern for HZSM‑5 zeolite
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The Si/Al ratio in the current zeolite was 52 that declares 
the high acidity power of this zeolite. High Si/Al ratio 
increases the hydrophobicity of zeolite which prevents 
water condensation in the zeolite cavities and consequently 
improves its adsorption properties for desired pollutants.[32] 
The specific surface area of HZSM‑5 and HZSM‑5/TiO2 at 
3, 5, and 8 weight percent was examined by BET test, as 
indicated in Table 1. HZSM‑5 showed the highest specific 
surface area, and this parameter decreased by adding Tio2 
particles on the zeolite. The large surface area came from the 
porous surface of zeolite, and most of the TiO2 was coated 
on the external surface of zeolite.[33] One gram of HZSM‑5 
adsorbed 22.63 mg of toluene vapors at 0.5 L/min flow rate 
and 25°C that was more than its capacity for adsorption of 
thiophene in Weitkamp et al. study,[34] and this obtained 23.81, 
28.88, and 38.06 mg/g for HSZM‑5/TiO2‑3%, 5%, and 8%, 
respectively. Based on these results, adding TiO2 particle 
to the HZSM‑5 zeolite improved adsorption capacity and 
it was maximum for 5% of TiO2. It has been reported that 
loading TiO2 on zeolites takes place on or and then, it can said 
that adding TiO2 on the zeolite caused better adsorption of 
toluene vapors on the acid sides of the zeolite. Then, pollutant 
degradation will be better when external UV source applies in 
the system.[35,36] This photocatalyst showed a good capability 
for capturing toluene vapors, which is compatible with 
Migliardini et al. study. They reported that high adsorption 
capacity of toluene can be due to its large molecular size, 
as for a large molecule, the overlap of the adsorption field 
from neighboring walls enhances the interaction energy.[37] 
Furthermore, the adsorption capacity was the lowest for 
HZSM‑5 zeolite and the highest for 5% TiO2 sample, and this 
percentage can be the best percentage for capturing toluene 
vapors from the air. It indicates that sample with better surface 
area does not necessarily present better adsorption capacity or 
longer breakthrough time.[38] The adsorption capacity rising 
can be due to the increase in saturation time, as mentioned 

in Kim and Ahn study.[39] In this case, the BET surface area 
and pore surface area were decreased with an increase in the 
percentage of TiO2 particles, whereas the adsorption capacity 
showed the reverse procedure. In other words, the adsorption 
capacity does not appear to depend on the BET surface area 
or micropore surface area.[39] The breakthrough time for all 
samples illustrated in Table 2, breakthrough curves divided 
into three stages. In the first stage, complete adsorption of 
toluene happened and the concentration of the pollutant in 
the reactor exhaust was close to zero. In the second stage, 
the outlet concentration increased slowly and reached the 
breakthrough point that the pollutant started to exit from the 
reactor. Then, outlet concentration increased significantly. 
In the third stage, both inlet and outlet concentration were 
equal.[38] All of the four samples showed a long breakthrough 
time for capturing toluene molecules inside themselves 
that indicate the desired capability of this photocatalyst 
for adsorption toluene vapors. Introduction of the TiO2 
to HZSM‑5 increases the breakthrough time. The longest 
breakthrough time was 481 min (HZSM‑5/TiO2‑5%) and the 
shortest was 286 min (HZSM‑5). It can be concluded that the 
longer breakthrough time creates a better dynamic adsorption 
capacity and sufficient time for interaction between toluene 
vapors and photocatalyst structure, which is compatible with 
the result of the Zhang et al. study.[38]

Conclusion

Adsorption characteristics and adsorption capacity of 
TiO2/HZSM‑5 in different percentages of TiO2 for toluene 
vapor removal from airstream were investigated. With 
the addition of TiO2 particles, adsorption and textural 
properties of HZSM‑5 were changed. In the TiO2/HZSM‑5 

Table 1: Textural properties HZSM-5 and photocatalyst from BET test

Sample Total surface area (m2/g) Micro pore surface area (m2/g) Total pore volume (cm3/g) Micro pore volume (cm3/g)
HZSM-5 298 202.56 0.9 0.103
HZSM-5/TiO2-3% 213 143.13 0.218 0.08
HZSM-5/TiO2-5% 189 147.1 - 0.079
HZSM-5/TiO2-8% 185 124.4 - 0.067
TiO2: Titanium dioxide

Table 2: Different sample adsorption experimental results

Photocatalyst T bk (min) Bed 
saturation 
time (min)

Adsorption 
capacity 
(mg/g)

Total 
time 
(min)

HZSM-5 286 148 22.63 434
HZSM-5/TiO2-3tw 301 281 23.81 582
HZSM-5/TiO2-5tw 481 255 28.88 620
HZSM-5/TiO2-8tw 365 180 38.06 661
TiO2: Titanium dioxide

Figure  5: Scanning electron microscope images of HZSM‑5/titanium 
dioxide (3% titanium dioxide)
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photocatalyst‑specific surface area, micropore surface 
area was lower than those in HZSM‑5 alone. Adsorption 
capacity, breakthrough time, saturation, or equilibrium time 
was increased in photocatalyst, which may be because of 
TiO2 particle interaction with toluene vapors. Among the 
different TiO2 weight percentages, TiO2/HZSM‑5‑5% showed 
the highest adsorption capacity and longest breakthrough 
time. High adsorption capacity and long breakthrough time 
indicate that this photocatalyst can absorb the high amount 
of toluene vapors for a long time and provide enough time 
for the catalytic and photocatalytic reaction for removal and 
degradation of pollutant.
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